
CONVEX PROGRAMMING
WITH CVXPY
By William Zijie Zhang





Mathematical Optimization



Mathematical Optimization

—Leonhard Euler

“Nothing at all takes place in the universe in which some
rule of maximum or minimum does not appear.”



Mathematical Optimization
General Form of a problem

minimise 

subject to , 

and , 

f0(x)

fi(x) ≤ 0 i = 1, . . . , m

gj(x) = 0 i = 1, . . . , n



Example of optimization problems
Maximize pro�ts

Find the best price  for selling  items

If you set the price at 1.50, you will be able to sell 5000 items

and for every 10 cents you lower the price you will be able to sell another 1000 items

Minimize production costs

Determine the number of units  the manufacturer should produce to minimize cost

, where 

x n

q

Pc(q) = 0.0001q2 − 0.08q + 65 + 5000
q

q > 0



Gradient Descent



Gradient Descent

Iterative De�nition

, where  and 

 is called the step length

and  is called the step direction where 

We hope that this sequence will converge to a global minimiser of 

xk+1 = xk + akpk k ≥ 0 f(xk+1) ≤ f(xk)

ak

pk pk = −∇f(xk)

f(x)



General Concerns

Most problems are impossible to solve analytically

Numerical solutions to problems are computationally heavy (NP-hard)

Some algorithms converge to saddle points (Newton's method)



Convex Functions



Convex Functions

De�nition
A function  is convex, if for any , and ,

Importance
A local minimum of  is also guaranteed to be a global minimum of 

f x, y λ ∈ [0, 1]

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

f f



Example of convex functions
- 

- 

- 

- 

- 

ex

xlog(x)

max(x1, . . . , xn)

aT x + b

||x||



Example of concave functions
- 

- 

- 

-  

√xy

log(x)

min(x1, . . . , xn)

xp, where 0 < p < 1



Verifying Convexity



Verifying Convexity

First method: by de�nition

Prove that 

for any  and 

Second method: second order condition

Verify that the hessian of  is positive semi-definite

In mathematical notation: 

Generalisation of the second derivative test for functions

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

x, y λ ∈ [0, 1]

f(x)

∇2f(x) ≽ 0



CVXPY and how it works



CVXPY and how it works

What is CVXPY?
Open Source Python modeling language for convex optimization problems.

Abstracts away the complexity of implementation for solvers

Disciplined Convex Programming

Seamless interaction with other Python libraries

Over tens of thousands of users



Convex Calculus



Convex Calculus

Transformations preserving convexity

non-negative scaling

if  is convex and , then  is also convex

summation

if  and  are convex, then  is also convex

composition

if  is convex and  is convex and increasing, then  is also convex

f(x) a ≥ 0 a ⋅ f(x)

f(x) g(x) f(x) + g(x)

f h h(f(x))



Disciplined Convex Programming (DCP)



Disciplined Convex Programming (DCP)

Analysis of convexity:

Build a parse tree starting from an Expression

Branch outward recursively to Atoms and Leaves

Store information about curvature, domain and monotonicity

Example:



Example of DCP parsing



Limitations of DCP
Example: 

Typical Parsing:

cp.sqrt( cp.square(x) + 1 )

Nodes: 1,  and  are all convex

Node:  is concave

√x2 + 1

x2 1 + x2

√.



Limitations of DCP
Example: 

What it should be:

cp.norm( cp.stack [ x , 1 ] , 2 )

Node: [ x , 1 ] is convex

Node:  is convex

DCP is unable to analyze the curvature of all functions!

√x2 + 1

|| ∗ ||2



Applications of convex programming



Linear Least Squares



Linear Least Squares

Problem Statement :

Minimise , (the sum of squared differences)

Find the corresponding optimal , where  is known as the residual

||Ax − b||22

x∗ r = Ax∗ − b



Linear Least Squares

Problem Statement :

Minimise , (the sum of squared differences)

Find the corresponding optimal , where  is known as the residual

||Ax − b||22

x∗ r = Ax∗ − b

In [36]: import cvxpy as cp
import numpy as np
#generate random data
m = 30; n = 20
np.random.seed(1)
A = np.random.randn(m, n)
b = np.random.randn(m)



Linear Least Squares

Problem Statement :

Minimise , (the sum of squared differences)

Find the corresponding optimal , where  is known as the residual

||Ax − b||22

x∗ r = Ax∗ − b

In [36]: import cvxpy as cp
import numpy as np
#generate random data
m = 30; n = 20
np.random.seed(1)
A = np.random.randn(m, n)
b = np.random.randn(m)

In [37]: #solve the problem using CVXPY.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)
result = prob.solve()
print(result)

19.83126370644502



Portfolio Optimization



Portfolio Optimization

Problem statement :

Maximize , the risk-adjusted expected return

where , and 

De�nitions :

Long only portfolio:  for all 

Short position: 

Possible objectives: high return or low risk

Adjusting  can give the optimal risk-return trade-off

μT w − γwT ∑w

1T w = 1 w ∈ W

wi > 0 i

wi < 0

γ



Portfolio Optimization



Portfolio Optimization
In [2]: import numpy as np

import scipy.sparse as sp
#generate random data
np.random.seed(1); n = 10
mu = np.abs(np.random.randn(n, 1))
Sigma = np.random.randn(n, n)
Sigma = Sigma.T.dot(Sigma)



Portfolio Optimization
In [2]: import numpy as np

import scipy.sparse as sp
#generate random data
np.random.seed(1); n = 10
mu = np.abs(np.random.randn(n, 1))
Sigma = np.random.randn(n, n)
Sigma = Sigma.T.dot(Sigma)

In [3]: import cvxpy as cp
#solve the problem using CVXPY
w = cp.Variable(n)
gamma = cp.Parameter(nonneg=True)
ret = mu.T @ w
risk = cp.quad_form(w, Sigma)
objective = cp.Maximize(ret - gamma * risk)
constraints = [cp.sum(w) == 1, w >= 0]
prob = cp.Problem(objective, constraints)
gamma.value = 0.2
prob.solve()

Out[3]: 1.5000976202809573



Other applications
Computer Vision and Image processing:

Image restoration (inpainting, deblurring)

Regularization techniques for image processing



Other applications
Computer Vision and Image processing:

Image restoration (inpainting, deblurring)

Regularization techniques for image processing



Other applications
Computer Vision and Image processing:

Image restoration (inpainting, deblurring)

Regularization techniques for image processing



Other applications
Landing Rockets (Control Theory):

Real-time path and trajectory generation

Implementations of physical structures



Further Research



Further Research

Additional Support for Complex Parameters in CVXPY
What needs to be done:

Caching compilations for convex problems with complex parameters

Automatic differentiation for complex derivatives



References
Convexity and Duality

DCP quiz

CVXPY documentation

SFU Optimization Problems

CVXPY Portfolio Optimization example

https://www.youtube.com/watch?v=d0CF3d5aEGc
https://dcp.stanford.edu/quiz
https://www.cvxpy.org/index.html
https://www.sfu.ca/math-coursenotes/Math%20157%20Course%20Notes/sec_Optimization.html
https://colab.research.google.com/github/cvxgrp/cvx_short_course/blob/master/applications/portfolio_optimization.ipynb



